32 research outputs found

    Authenticated Key Exchange over Bitcoin

    Get PDF

    Attribute-Based Signatures for Unbounded Languages from Standard Assumptions

    Get PDF
    Attribute-based signature (ABS) schemes are advanced signature schemes that simultaneously provide fine-grained authentication while protecting privacy of the signer. Previously known expressive ABS schemes support either the class of deterministic finite automata and circuits from standard assumptions or Turing machines from the existence of indistinguishability obfuscations. In this paper, we propose the first ABS scheme for a very general policy class, all deterministic Turin machines, from a standard assumption, namely, the Symmetric External Diffie-Hellman (SXDH) assumption. We also propose the first ABS scheme that allows nondeterministic finite automata (NFA) to be used as policies. Although the expressiveness of NFAs are more restricted than Turing machines, this is the first scheme that supports nondeterministic computations as policies. Our main idea lies in abstracting ABS constructions and presenting the concept of history of computations; this allows a signer to prove possession of a policy that accepts the string associated to a message in zero-knowledge while also hiding the policy, regardless of the computational model being used. With this abstraction in hand, we are able to construct ABS for Turing machines and NFAs using a surprisingly weak NIZK proof system. Essentially we only require a NIZK proof system for proving that a (normal) signature is valid. Such a NIZK proof system together with a base signature scheme are, in turn, possible from bilinear groups under the SXDH assumption, and hence so are our ABS schemes

    Stronger security notions for decentralized traceable attribute-based signatures and more efficient constructions

    Get PDF
    We revisit the notion of Decentralized Traceable Attribute-Based Signatures (DTABS) introduced by El Kaafarani et al. (CT-RSA 2014) and improve the state-of-the-art in three dimensions: Firstly, we provide a new stronger security model which circumvents some shortcomings in existing models. Our model minimizes the trust placed in attribute authorities and hence provides, among other things, a stronger definition for non-frameability. In addition, our model captures the notion of tracing soundness which is important for many applications of the primitive. Secondly, we provide a generic construction that is secure w.r.t. our strong security model and show two example instantiations in the standard model which are more efficient than existing constructions (secure under weaker security definitions). Finally, we dispense with the need for the expensive zero-knowledge proofs required for proving tracing correctness by the tracing authority. As a result, tracing a signature in our constructions is significantly more efficient than existing constructions, both in terms of the size of the tracing proof and the computational cost required to generate and verify it. For instance, verifying tracing correctness in our constructions requires only 4 pairings compared to 34 pairings in the most efficient existing construction

    Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs

    Get PDF
    This paper presents the first attribute-based signature (ABS) scheme in which the correspondence between signers and signatures is captured in an arithmetic model of computation. Specifically, we design a fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS scheme for signing policies realizable by arithmetic branching programs (ABP), which are a quite expressive model of arithmetic computations. On a more positive note, the proposed scheme places no bound on the size and input length of the supported signing policy ABP’s, and at the same time, supports the use of an input attribute for an arbitrary number of times inside a signing policy ABP, i.e., the so called unbounded multi-use of attributes. The size of our public parameters is constant with respect to the sizes of the signing attribute vectors and signing policies available in the system. The construction is built in (asymmetric) bilinear groups of prime order, and its unforgeability is derived in the standard model under (asymmetric version of) the well-studied decisional linear (DLIN) assumption coupled with the existence of standard collision resistant hash functions. Due to the use of the arithmetic model as opposed to the boolean one, our ABS scheme not only excels significantly over the existing state-of-the-art constructions in terms of concrete efficiency, but also achieves improved applicability in various practical scenarios. Our principal technical contributions are (a) extending the techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which were originally developed in the context of boolean span programs, to the arithmetic setting; and (b) innovating new ideas to allow unbounded multi-use of attributes inside ABP’s, which themselves are of unbounded size and input length

    Electoral Systems Used around the World

    No full text

    The SPEKE Protocol Revisited

    No full text

    The SPEKE Protocol Revisited

    No full text

    The SPEKE Protocol Revisited

    No full text

    DRE-ip: A Verifiable E-Voting Scheme without Tallying Authorities

    No full text

    Theoretical Attacks on E2E Voting Systems

    No full text
    corecore